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Abstract

In a two-stage model of choice a decision maker first shortlists a given menu and then
applies her preferences. We show that a sizable class of these models run into signifi-
cant issues in terms of identification of preferences (welfare-relevance) and thus cannot
be used for welfare analysis. We classify these models by their revealed preference prin-
ciples and expose the principle that we deem to be the root of their identification issue.
Taking our analysis to an experimental data, we observe that half of the alternatives
that are revealed preferred to another under rational choice are left revealed preferred
to nothing for any member of this class of models. Furthermore, the welfare-relevance
of the specific models established in the literature are much worse. The model with
the highest welfare-relevance produces a revealed preference relation with the average
density of 2% (1 out of 45 possible comparisons revealed), while rational choice does
63% (28 out of 45 possible comparisons). We argue that the issue is not an inherent
feature of two-stage models, and rather lies in the approach with which the first stage
is modeled in the literature.

1 Introduction

Models of bounded rationality have long been of interest as a way to accommodate “irra-
tional” patterns. The standard approach of these models is to generalize rational choice
by adding degrees of freedom; i.e., new primitives in the decision process. Examples are
adding shortlisting stages, reference points or perturbing the preference relations. However,
enriching the set of primitives inevitably leads to potential identification problems due to
the increased degrees of freedom. Intuitively then one may expect these models to be weak
in terms of identification power compared to rational choice. Recent papers in the literature
(see Dardanoni et al. (2020) and Dardanoni et al. (2023)) acknowledge this and hence sug-
gest considering population data instead, hinting to a drawback that such models impose
a “richness” condition on the data “comprising a single individual’s choices from a large
number of different overlapping menus”.
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Two-stage models constitute a large class of models of bounded rationality. In these
models a decision maker (DM) first makes a shortlist from a given problem and then uses
her preferences to choose the best alternative from the shortlisted ones. One particularly
interesting observation that speaks to the identification problem in many of the two-stage
models is that if the data set is consistent with rational choice, then one cannot identify
preferences at all.1 This “inconsistency-dependency” is a rather paradoxical feature in that
the models that are aimed to generalize rational choice can only be identified if observed
choice is not rational.

In this paper, we follow the revealed preference tradition to better understand the issue
of preference identification in two-stage models. This tradition teaches us how to establish
a proper mapping between the set of observables (choice) to the set of unobservables of the
decision process. (preferences, cognitive constrains, etc.) Following this tradition, we try to
find the common observational requirements these models impose to reveal preferences. We
refer to these requirements as revealed preference principles (RP principles). In particular,
in our analysis these principles are the minimum observations required for an alternative to
be revealed preferred to some other. (having a non-empty lower contour set)

The first principle we find is a stringent one called choice over pivots (CoP). A pivot is
an alternative the removal of which alters choice. CoP implies that an alternative that is
not at least chosen over a pivot will have an empty lower contour set. For rational choice,
in contrast, each choice observation is welfare-relevant: the chosen alternative is better than
those that are available but not chosen. Four prominent two-stage models follow CoP.
These models are (i) limited attention (Masatlioglu et al. (2012)), (ii) limited consideration
(Lleras et al. (2017)), (iii) rational shortlist method (Manzini and Mariotti (2007)), and (iv)
transitive rational shortlist method (Au and Kawai (2011)).

The second RP principle is standard transitive closure (STC): if a data set does not help
identifying any information about the lower contour set of an alternative, then adding more
data where that alternative is not available at all can not help with the identification. That is,
as in rational choice, the indirect revealed preference relation can only built upon an already
non-empty direct revelation. This is a rather uncontroversial principle that intuitively should
hold for almost any standard choice model, whether two-stage or not. Indeed, in addition
to the four models above, rational choice follows STC. It turns out that, when combined
with CoP, this new property exacerbates the observational burden on welfare analysis: an
alternative now needs to be involved in a violation of the weak axiom of revealed preference
(WARP) to be have a non-empty lower contour set, where involvement means being chosen
in the intersection of a WARP violation.2

We next detect an even more stringent RP principle: choice over choice (CoC): an
alternative that is not chosen over a chosen alternative has an empty lower contour set. To
see why this property is more stringent than CoP, note that there are two type of pivots:
chosen points and unchosen points. CoC immediately disregards the latter type of pivots
for revealed preference purposes. All models except (iv) follow CoC. When combined with

1This for example is the case for the models in Masatlioglu et al. (2012), Lleras et al. (2017), Manzini
and Mariotti (2007), and Au and Kawai (2011) among many others.

2Many other two-stage models do run into this welfare-irrelevance result. Examples are Lleras et al.
(2021), Inoue and Shirai (2022), Yildiz (2016), Kimya (2018), Geng and Özbay (2021), Horan (2016), and
Geng (2022). For the sake of being concise we do not include them in our analysis.
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STC, the extra observational burden becomes the following: for an alternative to have a
non-empty lower contour set it has to now be directly involved in a WARP violation – i.e.,
cause the WARP violation itself.3

The important point stemming from our result is that this inconsistency-dependency
feature is not an innate feature of a two-stage model, and rather due to the formulation of
a typical two-stage model in the literature that impose CoP(C). Take for example a model
where DM shortlists with an unspecified mechanic to the observer in the first stage, but in
a way that at least two alternatives are considered in the second stage. The intuition of
this assumption is that DM faces a trade-off in the second stage. In such a model, welfare
analysis can be done whether or not the data exhibits irrational patters. Since we argue that
STC is a a rather non-restrictive assumption, the underlying reason for the identification
issue is CoP(C). Indeed, a model with this size-dependent formulation of the first stage still
satisfies STC; thus moving beyond the inconsistency-dependent feature precisely because it
violates CoP(C). Finally, our results also indicate that not all patterns of violations are
welfare-relevant in these models. To be more precise, the violation of strong axiom of revealed
preference (SARP) are yet welfare-irrelevant if they are not WARP violations.4

We complement our analysis by an experimental illustration. We first report welfare-
irrelevance results regarding our theoretical analysis based on CoP(C). We show that half
of the alternatives that have non-empty lower contour sets under rational choice will be left
with an empty lower contour set in any two-stage model that follows CoP(C) and STC.
After providing the general analysis of this class of models, we zoom in and provide the
welfare-relevance of the specific two-stage models (i)-(iv). Using this specific models allows
us to provide precise results on welfare-relevance by talking about the density of the revealed
preference relation. That is, the number of comparisons revealed given a model normalized
by the total number of comparisons existing in a complete and acyclic binary relation. This
precise welfare-relevance measure is drastically lower in these specific models when compared
to the general drop in the number of alternatives with non-empty lower contour sets in the
class. The best model is (iv) (the only non-CoC model in the list above) for which only 2%
of preferences are revealed, while for rational choice 63% of comparisons are revealed. These
results illustrate that, even in the class of two-stage models that follow CoP and STC, these
specific models deliver minimal welfare-relevance.

Next, we investigate versions of these model where we force a CoP-violating assumption
on them in order to see whether or not we can improve their welfare-relevance. For this
objective, we consider amended versions by assuming that DM (in addition to following the
rules of the model) also always considers at least two alternatives. The amended versions, as
discussed before, violate CoP and thus does not have to follow the inconsistency-dependent
identification. Two observations about this practice are insightful. First, we observe that
the average density of revealed preferences relation rises to about 20% which is about a
third of the density for rational choice. This is a rather significant increase and potentially
sufficient in many applications given that we are dealing with two-stage models with an extra
primitive. More importantly, this rise is almost the same regardless of the model (densities

3Note that neither CoP nor CoC implies irrational patters in choice. It is indeed combining it with
STC that makes preference identification dependent on WARP violations. For a discussion see Section 3.

4That is, choice cycles of orders higher than two. It is worth noting that the dissection between the two
types of violations is only relevant if the data set is incomplete. For a discussion on this see Section 3.
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are in the range 17% to 21%), hinting that theCoP-violating assumption (the size dependent
formation) is by far more relevant for preference identification than the conditions imposed
on the first stage of these model.

Our analysis assumes that the observer only has access to an incomplete (realistic) data
set. The analysis of two-stage models given such data set has received attention recently.
De Clippel and Rozen (2021) investigates the question of falsifiability of a variety of behav-
ioral models (some of which are in our analysis as well) in such a setting. They provide a
common way for testing the models; that is, to see if an observed data set could be pro-
duced by a given model. Our question is instead on identifiability of preferences within these
models.

As mentioned earlier, a simple way to break the inconsistency-dependent identification is
to ensure that DM performs some comparisons after shortlisting. This idea has been used in
the literature before, for example in Barseghyan et al. (2021) and Bajraj and Ülkü (2015).5

In addition, the consideration capacity model in Dardanoni et al. (2020) is a reminiscent
idea.

The remainder of this paper is organized as follows. Section 2 presents the necessary
definitions. Section 3 presents the theoretical results. Section 4 provides an experimental
illustration. Section 5 concludes. All proofs omitted in the text can be found in the Appendix.

2 Definitions

Let X be a finite universal set of alternatives. Let B ⊆ 2X be a collection of choice problems
with at least two alternatives (|B| ≥ 2 for all B ∈ B) where 2X is the set of all the subsets
of X. c : B → X is a choice function if c(B) ∈ B. Thus a data set can be described by
the pair (B, c). Let c(B) =

⋃
B∈B c(B) be the collection of all chosen points in the data

set. A binary relation ≻ ⊆ X ×X is a strict preference relation if it is complete (any pair of
alternatives is comparable), transitive (x ≻ x′ and x ≻ x′ implies x ≻ x′′ for any x, x′, x′′ ∈
X), and asymmetric (x ≻ x′ implies x′ ̸≻ x for any x, x′ ∈ X). By max(B,≻) we mean the
set of maximal elements of ≻ in B; that is, max(B,≻) = {x ∈ B : ̸ ∃ y ∈ B : y ≻ x}.

Two-Stage Models In the first stage, DM shortlists a given problem using a filter: a
mapping F : 2X → 2X such that F (B) ⊆ B. We denote the set of all possible filters by F.
F (B) thus may be understood as the consideration set for the problem B. The second stage,
without loss of generality, could be assumed to consist of applying a strict preference relation
on what survives the first stage.6 Naturally we assume that, a priori, any preferences in the

5The latter paper in particular introduces a two-stage model where DM picks the top two alternative
based on a linear order in the first stage, and then applies another linear order (preference relation) in the
second stage. Thus this model is slightly different from the size-dependent formulation we mentioned earlier
where more than two alternatives may appear in the second stage.

6An elaboration may be needed here. In general one may impose a weaker requirement on the binary
relation in the second stage. For example, Manzini and Mariotti (2007) only requires an asymmetric binary
relation in the second stage. However, in order for the choice function to be well-defined (i.e., non-empty
valued) one needs to impose acyclicity over the items that survive the first stage. Acyclicity of course
guarantees the existence of an extension to a strict preference relation. This would mean that any two-stage
model generates a well-defined choice function if and only if it its version with a strict linear order in the
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second stage are allowed for a two-stage model. Consequently, the only distinguishing aspect
of any given pair of models is their first stage; i.e., the collection of filters they allow. A
two-stage model F thus is simply a subset of F. Consequently, rationalizability would mean
that one could find a filter in F and a preference relation to generate the observed data with.

Definition 1. A two-stage model of choice is a collection of filters; i.e., F is a two-stage
model if and only if F ⊆ F. A data set (B, c) is rationalizable with model F if there exist

(i) a filter F ∈ F , and

(ii) a preference relation ≻,

such that
c(B) = max(F (B),≻)

for every B ∈ B. In this case we say that (≻, F ) rationalizes (B, c).7

The definition above is as general as possible. One can think of an extremely exclusive
model such as F1 that only includes one filter, say the identity filter: F (B) = B for all B;
i.e., the classical rational choice. F2 could be another model that filters anything but x1

out when x1 is available, otherwise anything but x2 is filtered out when x2 is available, . . . ,
otherwise anything but xn when xn is available, and where X = {x1, x2, . . . , xn}. Of course
one can conceive a model F3 = F; i.e., a model with no restriction on filter selection. At the
same time, F4 = F1 ∪ F2 is another model in this framework.

Revealed Preferences (RP) Let us next formalize the revealed preference relation. We
need to introduce some additional notations first. Let

M(B, c) = {(≻, F ) : (≻, F ) rationalizes (B, c)}

be the collection of all the instances of the model that rationalize the data set. For a
rationalizable data set (i.e., M(B, c) ̸= ∅), we can define the revealed preference relation as

≻∗=
⋂

(≻,F )∈M(B,c)

≻ .

Also let L(x|(B, c)) be the the set of the alternatives revealed inferior to x given the data
set (B, c) according to ≻∗; that is, the lower contour set of x.

The last notation is the following. Consider a two-stage model where DM makes at least
one comparison in the second stage; that is, where filters are at least of size two. When we
observe the data point (B1, c1) of the form c{x, y, z} = x what can we infer about preferences?
We would know that x ≻∗ y or x ≻∗ z. These latter two pieces of information impose a

second stage does. Hence assuming second-stage rationality is with no restriction on the explanatory power
of the model. See Horan (2016) for more discussion on this. Also, let us note that a similar classification of
two-stage models appear in Tyson (2013).

7Note that by definition a filter is a mapping defined on 2X . Thus, our definition of rationalizability entails
the existence of an extension of an incomplete data set to a complete one consistent with the model. To see
the importance of the existence of such an extension, and the fact that is not guaranteed, see De Clippel
and Rozen (2021).
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“restriction” on the lower contour set of x. Absent of extra observation, they nonetheless do
not enrich RP; that is, L(x|(B, c)) = ∅. The restrictions could be insightful with more data
though. For example, if we collected another data point in the form of c{x, z} = z, then we
would know that z ≻∗ x, and using the or-logic that x ≻∗ y. This indicates the important
of the or-logic in performing RP in two-stage models. In order to contain these information
in our analysis, we use the notation R↓(x|(B, c)) to be the set of all restrictions on the
lower contour set of x. In our example, we have R↓(x|(B1, c1)) = {(x ≻∗ y or x ≻∗ z)}.89

2.1 Prominent Two-Stage Models

– Limited Attention (LA, see Masatlioglu et al., 2012)

Attention Filters : Filters are insensitive to removal of filtered alternatives.

F ∈ F if and only if F (B) = F (B \ {x}) if x /∈ F (B).

– Limited Consideration (LC, see Lleras et al., 2017)

Competition Filters : The set of filtered alternatives may only shrink if the choice
problem expands:

F ∈ F if and only if F (B) ∩B′ ⊆ F (B′) if B′ ⊆ B.

– Rational Shortlist Method (RSM, see Manzini and Mariotti, 2007)

Asymmetric Binary Filter : Irrespective of the choice problem, if x filters y out, then y
does not filter x out. Formally, there is an asymmetric binary relation ≻0 the maximal
elements of which survive the first stage.

F ∈ F if and only if F (B) = max(B,≻0).

– Transitive Rational Shortlist Method (TRSM, see Au and Kawai, 2011)

Asymmetric and Transitive Binary Filter : In addition to asymmetry, and again irre-
spective of the choice problem, if x filters y out and y filters z out, then x filters z out.
Formally, there is an asymmetric and transitive binary relation ≻0 that characterizes
the filter:

F ∈ F if and only if F (B) = max(≻0, B).

8Note that x need not be involved in all or segments, or on the same side in all of them for the restriction
to be a valid one. For example, (x ≻∗ y or z ≻∗ t) and (x ≻∗ y or z ≻∗ x) are also valid restrictions for x
and thus belong to R↓(x|(B1, c1)). A second note is that or-logic could also appear in some of the prominent
two-stage models in the literature. See De Clippel and Rozen (2021) for a comprehensive discussion on this
matter.

9Let us also mention that rigor requires us to, in addition to the data set, include the model from the
lens of which we are inferring preferences as an argument in these notations; that is, to instead write:
≻∗ ((B, c),F), L(x|(B, c),F), and R↓(x|(B1, c1),F). Unless needed though, we omit these extra arguments
in order to keep the flow of the writing.
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Note that, RSM is nested in LC (but not in LA). TRSM is of course nested in RSM and thus
in LC, but it has also been shown to be nested in LA. These relationships are interesting to
consider later where we quantify the welfare-relevance of these models.10

3 Welfare (Ir)Relevance

In this section, we provide the fundamental principles of two-stage models that should hint
at their unimpressive identifiability (of preferences). We built these fundamentals in the
tradition of revealed preference analysis which aims to map the set of unobservables (prefer-
ences along with other decision elements) to the observed choice patterns. Thus we refer to
them as revealed preference principles (RP principles). In particular, RP principles in our
analysis will talk about the necessary observations for an alternative to be revealed preferred
to another; i.e., having a non-empty lower contour set.11

Some well-known concepts will appear in our analysis and thus should be formalized at
this moment. Let (B, c) be a data set.

i. AWARP violation is a pair (B1, B2) : Bi ∈ B such that c(B1) ̸= c(B2), c(B1), c(B2) ∈
B1 ∩B2, and

ii. a SARP violation is a tuple (B1, B2, . . . , Bn) : Bi ∈ B such that c(Bi) ̸= c(Bj) for
any i ̸= j, c(Bi) ∈ Bi+1 for every i ≤ n− 1 and c(Bn) ∈ B1, and

iii. a pure SARP violation is a SARP violation that is not a WARP violation; i.e., choice
cycles of order higher than two.

We also need to define a notion that is repeatedly addressed in the literature of two-stage
models; i.e., pivots.

Definition 2. We call p ∈ X a pivot in (B, c) if there exists S ∈ X such that c(S) ̸= c(S−p)
in all the choice functions generated by all the rationalization of (B, c). We denote the set
of all the pivots in the data set (B, c) by piv(B, c).

Hence, a pivot is an alternative removal of which causes a change in DM’s choice. Note that
if a data set is consistent with rational choice, then the only pivots are chosen alternatives;
that is, c(B).12 We call this kind of pivot Type 1. If rationality is violated, we could
have unchosen alternatives as pivots. For example, take the choice pattern c{x, y} = y and
c{x, y, z} = x where removing z changes DM’s choice. We refer to such pivots as Type 2.13

10It is important to note that while we concentrate on these four models due to their relevance in the
literature, there are many other two-stage models that we could let in. These models include but no
restricted to Lleras et al. (2021), Cherepanov et al. (2013), Yildiz (2016), Kimya (2018), Geng and Özbay
(2021), Horan (2016), and Geng (2022). Our analysis in the next section also applies to these models.

11Our focus on RP principles instead of “mechanical” properties of the models is reminiscent of the
approach in Bernheim and Rangel (2009) (and later Nishimura (2018)) where the authors propose focuses
on RP principles that “make sense” abstract of a model (i.e., a model-free approach) as opposed to the
decision theoretic properties that produce them (model-based approach). For a comprehensive discussion on
the distinction between the two approaches see Manzini and Mariotti (2014).

12This is immediate consequence of the fact that rational choice model satisfies independence of irrelevant
alternatives.

13Bajraj and Ülkü (2015) refers to pivots as “reversers” and uses a similar categorization of such elements
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3.1 Choice over Pivots

The key insight into the importance of pivots in RP principles of a two-stage model is the
following: the removal of a pivot alters the consideration set irrespective of the two-stage
model we are dealing with. (that is, for all F in Definition 1) The reason is that, the different
choice made in the new set (after removal) and the original set can not be rationalized with
the same consideration set – that is, if removal of t alters choice in B, then F (B) ̸= F (B−t).
However, if the removal of an alternative does not alter the choice in a given problem,
then a construction where the consideration set before and after is unchanged seems both
straightforward and intuitive. This particular rationalization of course could only be the
case if the removed alternative was not considered before the change; that is, alternatives
that are not pivots may be assumed out of consideration sets.

The latter assertion is indeed the link that connects various two-stage models. This
common link, naturally, imposes a necessary condition on the revealed preference relation.
Standard revealed preference approach puts a bear minimum requirement for an alternative
to have a non-empty lower contour set. This requirement is that the alternative has to be
chosen in a problem where some other alternative is considered.14 On the other hand, the
assertion above tells us that if an alternative is considered in some choice problem, then
it has to be a pivot somewhere in the data set. Putting these two pieces of information
together, a necessary condition for an alternative to be revealed better to another is for it
to be chosen over a pivot. This principle is formalized next.

Choice over Pivots (CoP). If x is not chosen over a pivot in a data set, then there are
no restrictions on the lower contour set of x given that data set; that is,

∀(B, c),∀x, if ̸ ∃y ∈ piv(B, c) and B ∈ B such that x = c(B) and y ∈ B, then R↓(x|(B, c)) =
∅.

Let us make two important remarks about CoP. First, it is quite demanding compared
to the RP principle under rational choice where an alternative that is simply chosen in some
problem is guaranteed (necessary and sufficient) to have a non-empty lower contour set.15

This latter rational RP principle is obviously much more giving than CoP where to infer
that x is better than “something”, it is necessary to observe two patterns: (i) a data point
that shows x is chosen where y is available, and (ii) a pair of data points that indicates y is
a pivot. To make things worst, CoP is not a sufficient condition fort this revelation. The
second remark is that one can easily contemplate a reasonable two-stage model that violates
CoP. Assume that DM always has at least two alternatives in her consideration sets. This
model obviously violates CoP since any observation on a doubleton (such as c{x, y} = x) in
isolation allows us to infer DM’s preferences. (x ≻ y) In addition, when the decision problem
has more than two alternatives, we would get partial information in the form of the or-logic
which, in combination with direct information, could further enrich identification.

(using the terms “trivial” and “non-trivial”, respectively instead) in a model where exactly two alternatives
survives the first stage.

14This is standard in the sense that it also holds true for rational choice.
15Note that we have assumed the choice problems have at least two alternatives in them.
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While CoP is quite demanding, the second RP principle that we propose is uncontrover-
sial. Assume that the observer uses the two-stage model F and infers x ≻ y given the data
set (B, c). If she wants to know more about x, she may of course collect more data where x is
present. Nonetheless, she could also benefit from data points where x is not available. This
is because such a data point may help her infer for example y ≻ z, and thus indirectly that
x ≻ z by taking the transitive closure of the revealed preference relation. Needless to say,
it seems natural that the second channel (indirect preferences) could only work if the initial
data set tells us something about the lower contour set of x; that is, indirect revelations may
only be built on direct restrictions on the lower contour set of x in the original data set.

Standard Transitive Closure (STC). If a data set does put any restriction on the lower
contour set of x, then adding more data where x is not available at all does not put any
restrictions on the lower contour set of x; that is,

if R↓(x|(B1, c1)
)
= ∅, and x /∈

⋃
B2, then R↓(x|(B1, c1) ∪ (B2, c2)

)
= ∅.

Note that if a data set does not put any or-restrictions on the set of inferiors to an alternative
(R↓(x|(B, c)) = ∅), then the lower contour set of x will be empty. (L(x|(B, c)) = ∅) The
reverse is obviously not true. An incipient inquiry about the principle above hence may be
that whether it could be stronger. That is, doesn’t it also make sense that the extra data
where x is not present should not help identifying an alternative inferior to x in the case
where the initial data did not reveal anything inferior to it? – in other words, to replace R↓

with L in the expression of this principle?
This turns out to be false. To see this take the model where DM shortlists a minimum

of two alternatives. Our initial data point is c{x, y, z} = x which tells us that x ≻∗ y or
z ≻∗ t. Note that given this data we cannot pin down anything inferior to x yet since
there is a representation in which x is ranked below y and one where it is below z; i.e.,
L(x) = ∅. However, we can collect extra data where x is not present, namely c{y, z} = y
which indicates y ≻∗ z. Now there are two possibilities. If x is better than y based on the
initial data, then transitivity tells use that it is also better than z. In the other possibility,
x is directly better than z. Thus, x is revealed better than z for sure, even though the extra
data did not contain x at all. This example thus once again points to the relevance of the
partial RP information produced by a model through or-logic.16

To further buttress that STC is much less restrictive than CoP, recall that the two
models that violate CoP are rational choice and model where DM always considers at
least two alternatives. Both these models satisfy STC. Indeed it seems hard to think of a
“standard” model of chioce that violates STC. For example, take the model F = F where
there is no restriction on the filter selection. In this model, we can always rationalize the
data by “filtering anything but the choice out”. That is, there is no welfare content in this
model, and thus STC is obviously satisfied. It also can be shown that the two-stage models
listed in Section 2.1 follow STC. Moreover, these models satisfy CoP.

Remark 1. LA, LC, RSM, and TRSM follow CoP and STC.17

16Example such as this can also be found for two-stage models in the literature. See De Clippel and Rozen
(2021).

17All the models listed in footnote 10 also follow these two properties.
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Therefore, these four models are members of a class of models defined by these two RP
principles. Recall that any model in this family faces the observational burden due to CoP:
to identify an alternative inferior to x, we would require that (i) x to be chosen over an
alterative and (ii) the removal of that alternative to alter choice is some instance of the data.
Indeed, it turns out that, when combined with STC, the observational burden becomes
much more severe: instances where (i) and (ii) need to be closely related.

Theorem 1. Assume F follows CoP and STC. If x is not involved in a WARP violation
– that is, if there does not exit T, S,Q ∈ B with x ∈ T ∩ S ∩ Q, and Q ∩ (S \ {x}) ̸= ∅ or
Q ∩ (T \ {x}) ̸= ∅, such that

i. (T, S) is a WARP violation,

ii. c(Q) = x,

then it is not revealed preferred to any other alternative; that is, L(x|(B, c)) = ∅.

Figure 1: Observational Burden beyond CoP
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Theorem 1 shows that for an alternative to have a non-empty lower contour set it is not
sufficient to be chosen over a pivot and it is further required to be involved in a WARP
violation. Figure 1 helps us to see this further observational requirement in three layers.
First note that being chosen over a pivot does not imply violations of rationality. An instance
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is illustrated on Figure 1a, where x is chosen over the pivot y, while there are no violations
of rational choice. Theorem 1 implies that nothing can be inferred about the lower contour
set of x. More generally, if there are no violations of rationality in a data set, then the same
reasoning holds for any alternative. Theorem 1 thus implies rather a known feature of these
models: if the data set is consistent with standard rationality (has no SARP violations), then
there is no preferences revealed.

Corollary 1. Assume F satisfies CoP and STC. If the data set is rational – i.e., exhibits
no SARP violations – then F is welfare-irrelevant; that is, ≻∗= ∅.18

While known, Corollary 1 may appear paradoxical: identification in these models is linked
to the irrational patterns they are intended to explain! The important point stemming from
Theorem 1 is that this is not an innate feature of two-stage models. Take, once again, the
example of a DM who always considers at least two alternatives. Abstract away from any
consistency conditions on filter formation for a moment. As discuses before, we are able to
infer her preferences whether or not the data set exhibits violations of rationality.

The second extra layer of observational burden beyond CoP implied by Theorem 1 is
illustrated in Figure 1b. Here x is chosen over a pivot y. Note that here there is a violation of
rational choice: x is chosen over y, which, in turn, is chosen over z, which is then chosen over
x. This a pure SARP violation though, and, hence, x is not involved in a WARP violation.
According to Theorem 1 we are yet again unable to say anything about the lower contour
set of x.

Corollary 2. Assume F satisfies CoP and STC. If rationality is only violated in the form
of pure SARP violations, then F is welfare-irrelevant; that is, ≻∗= ∅.

It is important to note that Corollary 2 is only relevant if the data set is incomplete. It
is a well-known (also straightforward to observe) that if the data set in hand is complete,
then any SARP violation in one section of the data will inevitably create a WARP violation
somewhere else.

Finally, Figure 1c presents a case where x is chosen over a pivot, and that there is a
case of WARP violation (between the choice problems in gray and orange). However, x is
not present in the intersection of this violation, and thus, not involved in it. Once again
Theorem 1 implies that the lower contour set of x is empty.

3.2 Choice over Choice

Recall that there are two types of pivots: (i) the chosen ones, and (ii) the unchosen ones.
While CoP is a necessary condition for all four models listed in Section 2.1, it turns out
that three of them – LA, LC, and RSM – impose an even tighter necessary condition for
identification of preferences. For these models being chosen over a Type 2 pivot does not
allow to draw any inference about the non-emptiness of the lower contour sets.

18While we can use Theorem 1, another simple argument is useful. It is easy to check that a strict linear
order satisfies the filter conditions of all these models. When the model is fed a rational pattern, then we
can attribute the pattern completely to the filter – anything but the choice is filtered out – and use any
preference in the second stage.
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Choice over Choice (CoC). If x is not chosen over a chosen alternative in a data set,
then there are no restrictions on the lower contour set of x given that data set; that is,

∀(B, c), ∀x if ̸ ∃B ∈ B, y ∈ c(B) such that x = c(B) and y ∈ B, then R↓(x|(B, c)) = ∅.

Remark 2. LA, LC, and RSM follow CoC.

Imposing a tighter necessary condition on revealed preferences through CoC, combined with
STC, further exacerbates the observational burden established in Theorem 1. In order to
make sure that a given alternative has a non-empty lower contour set, the alternative now
needs to cause a WARP violation itself – or be directly involved in a WARP violation.

Theorem 2. Assume F follows CoC and STC. If x is not directly involved in a WARP
violation in (B, c) – that is, if there does not exist S, T ∈ B such that x = c(S), S ∩
T ∋ x, c(T ), and x ̸= c(T ) – then x is not revealed preferred to any alternatives; that is,
L(x|(B, c)) = ∅.

Figure 2: Necessary Conditions for Pointwise Welfare-Relevance

y1

x

y2

(a) CoP: involvement in a
WARP violation

x y

(b) CoC: direct involvement
in a WARP violation

Note that if x is directly involved in a WARP violation, then it is involved in a WARP
violation. Figure 2 visually contrasts these two notions. Under CoC, in the best case, we
can make inference about non-emptiness of the lower contour sets for the points that are
directly involved in a WARP violation; i.e., two points in total. Under CoP however, a
single WARP violation could potentially contribute to identification for more alternatives as
long as they are chosen in the intersection of this violation. Hence, an important takeaway
from Theorems 1 and 2 is that TRSM has a theoretical potential to perform better than the
other three models.

CoC will have a stronger welfare-irrelevance implication as long as pure SARP violations
are concerned: any alternative that is only involved in pure SARP violation will have nothing
revealed inferior to it.

Corollary 3. Assume that F satisfies CoC and STC. If x is only involved in pure SARP
violations, then L(x|(B, c)) = ∅.
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4 Experimental Illustration

We use the data from Inoue and Shirai (2022). Let us start by presenting the essential
details of the experiment. Subjects are asked to choose between a bundle of intertemporal
installments. Each bundle consists of three installments: in 1 month, in 3 months, and in
5 months. Each renumeration bundle consists of 2400 Japanese yen (about $16), split into
three installments. The universal set consists of 10 alternatives presented in Table 1.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

in 1 month 450 800 1150 450 450 800 850 1200 1550 500
in 3 months 800 800 800 450 1500 1150 0 0 0 0
in 5 months 1150 800 450 1500 450 450 1550 1200 850 1900

Table 1: Universal space of alternatives. Payments are in Japanese yen.

Each subject was presented with 20 different (but same across subjects) choice problems
to choose from. Problems contain two to eight alternatives.19 Figure 3 presents a typical
experimental interface. A total of 113 subjects (students of Waseda University, Japan)
participated in the experiment that was run in 4 sessions.

Figure 3: Experimental Interface

The remainder of this section is organized as follows. We first use the data from the
experiment to evaluate the overall possibility of an alternative having non-empty lower con-
tour sets using the results of Theorems 1 and 2; that is, abstracting away from a particular

19The composition of the problem sizes is as follows: 6 problems of size two, 2 problems of size 3, 3
problems of size 4, 2 problems of size 5, 3 problems of size 6, 3 problems of size 7, and 1 problem of size 8.
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model. This practice is interesting to get an overall idea about the power of identification,
especially because in many cases the observer may believe that the right models of choice is
shortlist and choose, but may not know which model is the right one. It however comes with
the cost that detailed information about revealed preferences (what is better than what) can
not be given without specifying the model. Hence, we next zoom in to a given model to
actually compute the density of the revealed preference relation.

4.1 General Welfare-Relevance: Theorems 1 and 2

Recall that Theorems 1 and 2 can help us determine the number of alternatives that po-
tentially could have non-empty lower contour sets. To put things in perspective, we use
this latter number as an indicator for the two-stage models and the benchmark model of
rational choice. The benchmark indicator thus will be the total number of distinct chosen
alternatives, since any chosen alternative is revealed preferred to another in rational choice.20

Next, we have the family of two-stage model that follow CoP and STC. By Theorem 1, the
indicator here is the number of those alternatives that are involved in a WARP violation.
Finally, under Theorem 2, the indicator for the two-stage models following CoC and STC
is the number of alternatives that are directly involved in a WARP violation.

Figure 4 presents the distributions of these three indicators. Top panel (Figure 4a) shows
the distribution of the number of distinct chosen alternatives. The mean and median here
is about 5, with about 40% of subjects choosing six and more distinct alternatives. This is
notable given that the total number of distinct alternatives is ten.21

Middle panel (Figure 4b) presents the number of distinct alternatives involved in WARP
violations. First of all, there is mass at zero which corresponds to 34% of subjects who are
rational and thus do not exhibit any WARP violations. The median number of alternatives
with non-empty lower contour set in this case is 2. That is already less than half than the
corresponding number under of rational choice. This distribution will still shift to the left
with respect to the distribution of the distinct chosen alternatives even if we were to remove
the rational patters. Indeed, the median for the distribution after removing the subjects who
look rational is 4. Thus, in the pool of subjects who violate WARP there are on average only
about 4 alternatives involved in WARP violations. This translate to a significant (perhaps
not a dramatic) loss in potential welfare-relevance for models like TRSM that follow CoP
but not CoC.

Finally, the bottom panel (Figure 4c) presents the number of distinct alternatives directly
involved in WARP violation. There is again mass at zero, corresponding to 34% of subjects
who are rational and thus do not exhibit any WARP violations. The median number of
alternatives with non-empty lower contour set in this case is 2. That is already less than half
than the corresponding number under the assumption of rational choice. In this case however,
after removing the subjects who look rational the distribution shifts even more to the left
compared to the updated distribution in Panel 4b. The median for this updated distribution
is 3 with mean being about the same. Thus, for the subjects who violate WARP there are
on average only about 3 alternatives directly involved in a WARP violation. This number

20Note that by definition the problems always contain at least two alternatives.
21We should note that each 10 alternatives are available is some problem, and thus a total of 10 distinct

chosen alternative could in principle be observed.
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Figure 4: Welfare-relevance analysis.

15



is less than a half of the potential inference compared to rational choice, and about a half
compared to those that follow CoP. Therefore, we observe a rather drastic loss in potential
welfare-relevance for models like LA, LC, and RSM (that follow CoC) when compared to
rational choice.

4.2 Welfare-Relevance: LA, LC, RSM, and TRSM

We have argued why this RP principles impose a strong restriction on welfare-analysis.
However, the number of alternatives with non-empty lower contour set is not an exact
measure of welfare-relevance. Thus we need introduce an exact measure of welfare-relevance.
In this practice furthermore, we make use of the CoP(C)-violating model we discussed
previously in order to quantify th extent to which the limitations of these models stems
from CoP(C). Recall that this model is only concerned with the size of the filter and not
with its exact mechanism. We denote this model by SDk (SD for size-dependent) where k
is the minimum size of the filter. Note that, SD1 is a model where anything goes through;
i.e., DM could be interpreted as if she filters anything but the chosen alternative out. Thus,
this model still follows CoP. Importantly, as noted before, SD2 violates CoP (and thus
CoC). Hence, is a good candidate to quantify the restrictive nature of these RP principles.
We amend this condition to the aforementioned models in order to see how much extra
relevance can a single increment of k bring. Hence, for each of the four models and SDk we
have two versions: (1) k = 1 which is original theory, and (2) k = 2 which is the amended
theory assuming that subject makes at least one comparison before choosing.

The Descriptive Power Before going though welfare-relevance, it is both important and
interesting to do an analysis on the descriptive power of these models (both original and
amended). That is, we would like to observe to what extent the observed data is consistent
with a given model. The basic indicator here would be the pass rate: the share of subjects
who pass the revealed preference test for the corresponding theory (and thus deemed as con-
sistent). However, different theories would allow for different scope of permissible behaviors.
Thus, the less restrictive a model is (for example SDk, LA, LC relative to RSM and TRSM
that are nested in LC), the higher its pass rate would be. To correct for this disparity, we
also consider the Predictive Success Index (PSI) introduced by Selten (1991); Beatty and
Crawford (2011). The goal behind PSI is to correct for potential false positives. In order to
do so, we generate 1000 subjects who take random decisions at every round. A false positive
then is such a random behavior whenever it is consistent with a given model. Normalizing
the pass rates, PSI subtracts the pass rates of random subjects from that of real subjects.
This index might take values between −1 and 1. PSI= −1 means that every random subject
is consistent with the theory while none of the real ones are. On the other hand, PSI= 1
implies that while every real subject has passed the test, and none of the random ones did.

Figure 5 presents the results of the descriptive power measured by the instructions above.
The top panel (Figure 5a) shows the raw pass rates for the models of interest. The dashed
line presents the pass rate for rational choice. White bars present the pass rates for the model
in the original formulation, while gray bars show the pass rates for amend version (at least
one comparison in the second stage). Let us start by noting that all models indicate pass
rates that are significantly above rational choice (33% for rational choice, while the lowest
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Figure 5: The descriptive power of the models measured by raw pass rates and the predictive
success index (PSI). White bars present the original model and gray bars present the model
with an additional restriction of making at least one comparison before making the final
decision. Dashed line presents the same measure for rational choice.
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among the two-stage models is TRSM×(k = 2) at 58%). This is of course expected as all of
these two-stage models generalize rational choice. A couple of more interesting observations
are the followings. LC and LA do not create significant drops in pass rates. More than 90%
of subjects are consistent with either models (indeed, 100% for LA× (k = 1)). The most
interesting observation in this panel is that the pass rate of the original and the amended
versions is almost the same in all of the four models. In other words, the CoP-violating
assumption that a minimum one comparison is made in the second stage has almost no
negative effect on the descriptive power of these models.

Figure 5b presents the PSI indicator. The dashed line presents the indicator for rational
choice. Similar to panel 5a, white bars present the PSI for the original model, while gray
bars do the amended version. Note that since SD1 does not impose any restriction on choice,
it is indistinguishable from random choice and thus has a PSI of 0. Interestingly, increasing
the filter size by one (that is, SD2) raises PSI for this rather “ad-hoc” model to the level
of rational choice. An interpretation is that, while not specifying a particular mechanical
channel, size-dependence captures a behavior that is quite non-random even only small sizes
are enforced. The original version of LA seems almost indistinguishable form random choice
as indicated in a PSI close to zero. However, LA’s amended version with k = 2 generates
enough restrictions to make the model falsifiable beyond random behavior, with a PSI which
is significantly above that of rational choice. Finally, for LC, RSM, and TRSM we see both
versions (original and amended) to generate PSIs that are about .5 − .7; i.e., significantly
above that of rational choice (.33). Hence, we can confidently say that these three models
explain the data better than rational choice theory.

SD LA LC RSM TRSM
0

0.2

0.4

0.6

0.8

1
k = 1
k = 2

Figure 6: Average density of the revealed preference relation. That is, the number of the
revealed comparisons divided by the number of total comparisons available in the complete
binary relation (45). Dashed line shows the density of the revealed preference relation under
rational choice. White bars show the results for original models and gray bars show the
results for the models with the requirement that at least on comparison is performed in the
second stage.
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Welfare-Relevance Next we proceed to analyze the welfare-relevance which we measure
by the density of the revealed preference relation they produce. By density we mean the
number of the revealed comparisons inferred from a model divided by the total number of
comparisons available in a preference relation. (45 in our data since there are 10 alternatives)
Figure 6 presents the results for the models of interest. The dashed line presents the density
for rational choice. White bars present the density for the original version, while gray bars
correspond to the amended version. It is important to note that we only compute densities
for the subjects who are consistent with a given model.

As expected, rational choice is quite efficient in revealing preferences, delivering the
density of about 0.62. However, looking at the original version of the four models we do
not observe any notable revelation of preferences. For these models, the density does not
exceed .02 which is effectively negligible (less than one comparison per subjects who pass the
model). Interestingly, there is no significant difference between RSM (following CoC) and
TRSM (following CoP). Intuitively then, while CoP opens an extra potential channel for
welfare-relevance (chosen over Type 2 pivots) compared to CoC, TRSM does not appear to
take advantage of this channel in any effective manner.

Finally, this figure showcases the relative importance of the ad-hoc amendment on the
size of the filter in welfare-relevance relative to the consistency conditions imposed by each
model. While the original models are equally ineffective, there is significant jump in density
from almost zero to about .20 (0.17-.21 range) upon imposing the amendment. Interestingly,
the intensity of the jump seems to be the same across the models, including SD. Hence, the
major source of identification brought to these models appears to be the CoP(C)-violating
amendment, not their filter consistency conditions. Looking at it from a different angel, this
practice also indicates that the specific models we discussed seem to rank quite low in term
of welfare-relevance even in the class of models that follow these RP principles.

5 Conclusion

In a two-stage model DM first filters a given problem and then applies her preferences
over the surviving alternatives to make a choice. Following the seminal paper of Manzini
and Mariotti (2007), many models have been proposed, differing one from the other in
terms of the formulation of the first stage. Prominent examples include but not limited to
Masatlioglu et al. (2012), Lleras et al. (2017), and Au and Kawai (2011). We show that all
these models run into serious identification issues by quantifying the density of preference
relations revealed. In the best case, one can only infer 2% of all possible comparisons, while
rational choice allows recovering 63%.

We theoretically trace the underlying reasons for this “welfare-irrelevance”. A key notion
is pivots – alternatives removal of which leads to a change in choice. These models, along
with many more in the literature, operate on a revealed preference principle that we refer to
as choice over pivots : CoP. Based on this principle one can not identify the set of inferiors
to an alternative that is not chosen over a pivot. Such an obviously restrictive revealed
preference principle is not an innate nature of a two-stage model. It is rather an implication
of the fact that these models insist on specifying particular mechanics for the first stage.
Upon making sensible but rather ad-hoc assumptions (such as a minimum size for filters),
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two-stage models would violate CoP and regain their identification power.
Our experimental analysis confirms CoP to be the source of welfare-irrelevance in these

models. While these models in the original version are almost completely ineffective in
revealing preferences (up to 2%), they all significantly benefit from setting the minimum size
of the filters equal to two. (about 20%) There are two important insights in our analysis
of the data. First, imposing the ad-hoc size-dependent structure on the filters has almost
no negative effect on the descriptive power of any of these models. Second, the boost in
welfare-relevance is almost of the same magnitude irrespective of the model we amend this
CoP-violating assumption. Our analysis overall suggests that the existing two-stage models
can benefit a lot more from contextually proper but yet ad-hoc assumptions on the way
filters are formed rather than specifying the “right” mechanics of the first stage.
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A Proofs

A.1 Proof of Theorem 1

Take a given data set (B, c). Also take an arbitrary x. If x is never chosen in the data,
then CoP gives us the desired result. So assume that x is chosen somewhere. Assume that
L(x|(B, c)) ̸= ∅. We show that x is involved in a WARP violation. Partition the data set in
three parts. (i): (B1, c1) which consists of those problems where x is chosen, (ii) (B2, c2) of
those where x is present but not chosen, and (iii) those where x is not present. STC implies
that if the observer can not draw any conclusion (infer any restrictions) from the first two
partitions about the set of inferiors of x, then she will not be able to do better by adding
the third. That is, she has to infer some restrictions from (B1, c1)∪ (B2, c2). But then CoP
implies that she would need to see x being chosen over a pivot in (B1, c1)∪(B2, c2). Let Q be
this choice problem and t be the pivot in that problem. Thus, t ∈ Q and x = c(Q). Given
that t is a pivot, there should be problems S, T ∈ B2 (by construction) such that T = S − t
and c(T ) ̸= c(S). Recall that pivot can be either chosen or unchosen alternative.
Case 1: t = c(T ). Since, T ∈ B2 we know that x ∈ T . Thus, t, x ∈ T ∩Q and t = c(T ) ̸=
c(Q) = x. Thus, x is (directly) involved in WARP violation.
Case 2: t ̸= c(T ). Then c(S) ∈ T and Thus, we have c(T ), c(S) ∈ S ∩ T and c(S) ̸= c(T ).
Thus, (T, S) constitute a WARP violation. Moreover, by construction x ∈ T ∩S ∩Q. Thus,
we conclude that it is involved in a WARP violation.

A.2 Proof of Theorem 2

The proof here is akin to that of Theorem 1. Take a given data set (B, c). Also take an
arbitrary x. If x is never chosen in the data, then CoC gives us the desired result. So assume
that x is chosen somewhere. Assume that L(x|(B, c)) ̸= ∅. We show that x is involved in
a WARP violation. Partition the data set in three parts. (i): (B1, c1) which consists of
those problems where x is chosen, (ii) (B2, c2) of those where x is present but not chosen,
and (iii) those where x is not present. STC implies that if the observer can not draw any
conclusion (infer any restrictions) from the first two partitions about the set of inferiors of
a given alternative x, then she will not be able to do better by adding the third. That is,
she has to infer some restrictions from (B1, c1) ∪ (B2, c2). Recall that by construction for
every T ∈ B1 the chosen alternative is x. Hence, for x to be chosen over another chosen
alternative (as implied by CoC) there should be y ∈ T . Moreover, we can conclude that
y = c(S) for S ∈ B2. However, by construction we know that x ∈ S since S ∈ B2. Thus, we
have S, T ∈ B1 ∪ B2 such that x, y ∈ S ∩ T , while c(T ) = x and c(S) = y. That is, x needs
to be directly involved in a WARP violation.

A.3 Proof of Remarks 1 and 2

Proof. CoP. For LA, LC, and RSM we instead show that CoC is satisfied, and thus address
the proof of Remark 2 as well.
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LA. Take a data set that is realizable with LA. Following the argument in De Clippel
and Rozen (2021) we know that there exists ≻ that satisfies the following set of restrictions:

for all S, T ∈ B with c(S) ̸= c(T ) and c(S), c(T ) ∈ S ∩ T :

c(S) ≻ z for some z ∈ S \ T or c(T ) ≻ z for some z ∈ T \ S
(1)

Now take x that is not chosen over a chosen alternative in the data set. Note that this
means there are not restriction of the above form on the lower contour set of x under ≻∗.

LC. Akin to the line of reasoning before and following a result in De Clippel and Rozen
(2021), this time the set of restrictions are of the form

c(S) ≻ c(T ) whenever c(S) ̸= c(T ) ∈ S ⊂ T (2)

Yet, again it follows that if x is not chosen over a choice alternative, there are no restric-
tions on the lower contour set of x under ≻∗.

RSM. Let (≻1,≻2) RSM-rationalize the data set (B, c). Fix x, and Let A = {t ̸= x :
∃B ∈ B : x, t ∈ B, x = c(B)}. This would directly imply that t ≻1 x does not hold for
any t ∈ A. Let ≻′

1=≻1 ∪{(x, t) : t ∈ A}. It follows that ≻′
1 is asymmetric. Next, let ≻′

2

be a reordering of ≻2 where we move x to from its original rank (wherever) to the bottom
of the order. Clearly (≻′

1,≻′
2) is a RSM. We show that (≻′

1,≻′
2) produces the same choice

function on the choice problems. Call this choice function c′. Starting with the B where x
is chosen, note that ≻′

1 filters anything but x out. Thus c(B) = c′(B) Going to the B where
x is available, but not chosen, note that a choice in such a problem, say y, does not belong
to A; that x ≻′ y does not hold. This implies that neither of the changes implemented has
an effect on choice in these problems and thus c(B) = c′(B). Lastly, consider B where x is
not present. We have only made changes to x. Thus, it directly follows that c′(B) = c(B).
Therefore, (≻′

1,≻′
2) is a RSM-rationalization of (B, c). Since x = argmin ≻′

2, it follows that
no restriction is imposed on the lower contour set of x.

TRSM. We first prove the following claim.

Claim, If an alternative p is not a pivot in the data, then there is always a TRSM-
representation (≻∗

1,≻2) where there are no q such that p ≻∗
1 q.

To see this claim, take (≻1,≻2) as a representation where the non-pivot alternative p
satisfies p ≻1 q ∈ Q. Let ≻′

1 be a binary relation where we remove all of these latter cases.
Note that ≻′

1 remains both asymmetric and transitive. Clearly (≻′
1,≻2) generates a TRSM

rationalizable data set. We show that this generated data set matches the observed choices.
For those problems where p is not available, there is not argument needed. So take those
where p is available, and note that, since it is not a pivot it is not the choice in such problems.
Next, since we shrunk the filter the consideration set in such sets may expand. So take x
that was not considered before the change and now it is considered; that is, t ≻1 x and there
is no comparison between the two in ≻′

1. Since p was not a pivot, even if removing it added
x to the consideration set before the change the choice would have remained the same. This
means the choice alternative before removal is preferred to x. Thus, after the change and
when x is put back in the consideration set, the choice in the problem remains the same. So
we have shown that (≻′

1,≻2) also rationalizes the data set.
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Having proved the claim above, the rest of the argument is similar to that of RSM. Let (≻1

,≻2) TRSM-rationalize the data set (B, c). Based on the claim above, let (≻∗
1,≻2) another

TRSM-rationalization where none of the pivots are ranked above any other alternatives
according to ≻∗

1. Fix x, and Let A = {t ̸= x : ∃B ∈ B : x, t ∈ B, x = c(B)}. Assume that
t /∈ piv(B) for all t ∈ A. This would mean that there are also not chosen any where and
thus t ̸≻∗

1 x for all t inA. We need to show there are no restriction on the lower contour set
of x under ≻2. Let ≻′

1=≻∗
1 ∪{(x, t) : t ∈ A}. Since t ̸≻∗

1 x, it follows that ≻′
1 is asymmetric.

Since t are not ranked above any other alternative in ≻∗
1 then ≻′

1 is also transitive. Next,
let ≻′

2 be a reordering of ≻2 where we move x to from its original rank (wherever) to the
bottom of the order. Clearly (≻′

1,≻′
2) is a TRSM. We show that (≻′

1,≻′
2) produces the same

choice function on the choice problems. Call this choice function c′. Starting with the B
where x is chosen, note that ≻′

1 filters anything but x out. Thus c(B) = c′(B) Going to the
B where x is available, but not chosen. Say that y is chosen here. Note that we can not
have x ≻′

1 y since in that case that x is chosen over a pivot; that is y /∈ A. Thus, neither of
the changes we implemented has an effect on choice in this problems and thus c(B) = c′(B).
Lastly, consider B where x is not present. We have only made changes to x. Thus, it directly
follows that c′(B) = c(B). Therefore, (≻′

1,≻′
2) is a TRSM-rationalization of (B, c). Since

x = argmin ≻′
2, it follows that no restriction is imposed on the lower contour set of x.

STC. For LA and LC, the we can directly conclude this from (1) and (2) and following our
previous reasoning using the argument of De Clippel and Rozen (2021); that is, if x is not
present, it can not put new restrictions on the preference relation.

For RSM the result follows from Corollary 1 and the proof of Theorem 1 in Manzini and
Mariotti (2007) where the authors show that given a incomplete data set one can construct
≻2 in the following form:

≻1= {(x, y) : x = c{x, y}}.

Now assume that there are no restriction on the lower-contour set of x given the data set
(B1, c1). Hence, adding new data such as (B2, c2) where x is not available will not add any
restrictions to enrich ≻2. Thus the result follows.

For TRSM, first note that as argued in Horan (2016) the models where the second ratio-
nale is only transitive (that is the model in Horan (2016)) is both in terms of identification
and axiomatization equivalent to TRSM. Furthermore, Theorem 3 in that paper establishes
that x ≻2 y if and only if there exists a 3-cycle xyz such that c{x, y, z} ̸= z. Thus adding
data where x is not available will not add to ≻2.
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