Best LACSC 2019 Paper award

June 11 2019

Forecasting Conditional Covariance Matrices in High-dimensional Time Series : a General Dynamic Factor Approach
by Marc Hallin, Luiz K. Hotta, João H. G. Mazzeu, Carlos Trucios, Pedro L. Valls Pereira and Mauricio Zevallos

received the best LACSC 2019 Paper Award at the 4th Latin American Conference for Statistical Computing, held in Guayaquil, Ecuador, May 28-31, 2019.

You can download the paper here.

Abstract: Based on a General Dynamic Factor Model with infinite-dimensional factor space, we develop a new estimation and forecasting procedures for conditional covariance matrices in high-dimensional time series. The performance of our approach is evaluated via Monte Carlo experiments, outperforming many alternative methods. The new procedure is used to construct minimum variance portfolios for a high-dimensional panel of assets. The results are shown to achieve better out-of-sample portfolio performance than alternative existing procedures.

Latest News

Christine De Mol elected Member of the “Classe des Sciences de l’Académie royale de Belgique”

14 April 2022

Congratulations, Christine !

Ehpad : l’entreprise à mission est-elle la solution ?

31 March 2022

Mathias Dewatripont explique dans quelles conditions un statut d’entreprise à mission pourrait faire la différence par rapport aux pratiques de responsabilité sociétale inadéquates mises en place aujourd’hui par certains opérateurs de maisons de retraite.

See more details

Women Lead to Inspire Award

30 March 2022

Our PhD candidate Zhanar KONYS was selected for the Women Lead to Inspire Award by Bain & Company.

See more details
See more news